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Small-angle X-ray scattering (SAXS) methods are extensively used for

characterizing macromolecular structure and dynamics in solution. The

computation of theoretical scattering profiles from three-dimensional models

is crucial in order to test structural hypotheses. Here, a new approach is

presented to efficiently compute SAXS profiles that are based on three-

dimensional Zernike polynomial expansions. Comparison with existing methods

and experimental data shows that the Zernike method can be used to effectively

validate three-dimensional models against experimental data. For molecules

with large cavities or complicated surfaces, the Zernike method more accurately

accounts for the solvent contributions. The program is available as open-source

software at http://sastbx.als.lbl.gov.

1. Introduction

Knowledge of the three-dimensional structures of macro-

molecules provides essential insights into biology at an atomic

level (Orengo et al., 1999). The vast majority of macro-

molecular structures are determined by X-ray crystallography,

typically providing high-resolution models with sub-ångstrom

precision in the refined atomic coordinates. Unfortunately, not

all proteins crystallize and, more often than not, the structure

and dynamics of proteins in solution are quite different to

what is observed in the crystal (Glatter & Kratky, 1982). The

behaviour of macromolecules in solution can be studied

using small-angle X-ray scattering (SAXS) (Hura et al., 2009;

Koch et al., 2003; Stuhrmann, 2008). Although SAXS is a low-

resolution technique, typically only providing scattering data

from 30 to 20 Å, the data can be interpreted with the aid of

known crystal structures. The synergistic use of high-

resolution atomic models in combination with SAXS data can

result in a fundamental comprehension of the biological

relevance of molecules in a near-native environment

(Grishaev et al., 2005; Putnam et al., 2007; Wang et al., 2008;

Grant et al., 2011).

1.1. Orientational averaging

The calculation of SAXS profiles can be carried out using

the Debye formula (Debye, 1915) with explicit (Grishaev et al.,

2010; Durchschlag & Zipper, 2003) or implicit (Schneidman-

Duhovny et al., 2010; Poitevin et al., 2011) modelling of border-

bound and excluded solvent. The main problem with the

Debye method is the computational complexity: for each

value of momentum transfer q [q ¼ 4� sinð�Þ=�, where � is the

wavelength and 2� the scattering angle], a double summation

of order N2 needs to be carried out, where N is equal to the

number of atoms. Distance binning procedures and other

techniques (Stovgaard et al., 2010; Schneidman-Duhovny et al.,

2010; Tjioe & Heller, 2007) can reduce the complexity

significantly but still suffer from difficulties associated with

modelling bound and excluded solvent.

The best known numerical procedure to reduce the

computational complexity from OðN2Þ to OðNÞ is the spherical

harmonics expansion (SHE) originally proposed by Stuhr-

mann and Svergun and implemented in the program CRYSOL

(Stuhrmann, 1970c; Svergun et al., 1995).

The SAXS intensity can be calculated as

IðqÞ ¼ hjAatomsðqÞ � �0AexclðqÞ þ ��0AboundðqÞj
2
i�; ð1Þ

where the complex quantity A is the Fourier transform of the

electron density from the particle (subscript atoms), excluded

solvent (subscript excl) and surface-bound solvent (bound).

The averaging in the above expression is carried out over the

solid angle � and q ¼ ðq;�Þ.
The averaging over the solid angle can be carried out in

several ways. First of all, one can choose the route adopted by

Debye in which the orientational average of the complex

exponent is evaluated analytically to be a sinc function. For

clarity, the expressions below only contain atomic contribu-

tions:

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5003&bbid=BB29


AatomsðqÞ ¼
PN
j¼1

fjðqÞ expð�iqrjÞ ð2Þ

and thus

IatomsðqÞ ¼
PN
j¼1

PN
k¼1

fjðqÞfkðqÞ
R
�

exp½�iqðrj � rkÞ� d�: ð3Þ

The latter integral evaluates as a sinc function such that one

obtains

IatomsðqÞ ¼
XN

j¼1

XN

k¼1

fjðqÞfkðqÞ
sinðqrjkÞ

qrjk

: ð4Þ

The complexity of the above expression is OðN2Þ.

Instead of evaluating the complex exponent analytically,

one can approximate it with a series expansion containing

Bessel functions and spherical harmonics (Edmonds, 1957):

AatomsðqÞ ¼
Plmax

l¼0

Pþl

m¼�l

4�ilYlmð�Þ
PN

j

fjðqÞjlðqrjÞY
�
lmð!jÞ; ð5Þ

where Ylm is a spherical harmonic of order (l;m), (rj; !j) are

the polar coordinates of atom j, fjðqÞ is the atomic scattering

factor and jl is a spherical Bessel function of order l. Setting

almðqÞ ¼
PN
j¼1

fjðqÞjlðqrjÞY
�
lmð!jÞ; ð6Þ

one obtains

AatomsðqÞ ¼
Plmax

l¼0

Pþl

m¼�l

4�ilalmðqÞYlmð�Þ: ð7Þ

Subsequent averaging over the solid angle is now greatly

simplified by the orthogonality properties of spherical

harmonics (Edmonds, 1957), resulting in

IatomsðqÞ ¼ 16�2
Plmax

l¼0

Pþl

m¼�l

jalmðqÞj
2: ð8Þ

As is clear from the above expression, the complexity is

reduced from OðN2Þ to OðNÞ, because the costly double

summation used in the Debye equation is replaced by a single

summation for each index (l;m).

1.2. Excluded and surface-bound solvent

The surface-bound solvent can be modelled in various ways.

Firstly, the method proposed by Stuhrmann (1970a,b) intro-

duces a single uniform solvent layer around the macro-

molecule using a two-dimensional angular function Fð!Þ. The

advantage of this method is its numerical simplicity in gener-

ating the scattering amplitudes from this border layer, invol-

ving pre-computed partial integrals of spherical Bessel

functions. Another approach is to use the modified scattering

factor approach which includes modelling of excluded solvent

and possible surface-bound solvent (Schneidman-Duhovny et

al., 2010):

fjðqÞ ¼ fvðqÞ � c1fsðqÞ þ c2sifwðqÞ; ð9Þ

where fvðqÞ is equal to the atomic form factor in vacuo,

fsðqÞ is the form factor of a dummy atom representing the

excluded solvent, si is the solvent accessibility of the atom and

fw is the form factor of water. Coefficients c1 and c2 model the

density of excluded solvent and bound surface water,

respectively.

The drawback of the dummy-atom approach for modelling

displaced solvent is that non-uniformities in the density can be

introduced by overlapping dummy atoms or empty spaces

where in reality one would expect a continuum of uniform

solvent. These non-uniformities typically do not have signifi-

cant effects on the scattered intensities for small values of

momentum transfer. The Stuhrmann approach of introducing

a uniform layer around the macromolecule can also be

problematic. For proteins containing cavities or those with a

non-star shape, the uniform layer around the convex hull of

the protein will introduce artificial areas without any density.

For proteins like chaperonins, the inner surfaces could not be

modelled with the Stuhrmann approach. An alternative route

for taking into account excluded and surface-bound solvent is

by explicit real-space modelling of these moieties (Grishaev et

al., 2010). A thorough approach is to add the solvation layer

using molecular modelling techniques (Park et al., 2009). The

main drawback of this route is the computational effort

involved in building the explicit solvent model. Another

approach is found in the so-called (modified) cube method

(Bardhan et al., 2009). The cube method for modelling

excluded solvent is reminiscent of modelling bulk solvent in

macromolecular crystallography where the Fourier transform

of a binary mask modelling for the excluded and surface-

bound solvent was used (Jiang & Brunger, 1994).

In this communication, an approach related to the cube

method is developed. In x2, the detailed derivation and the

procedure parametrizing three-dimensional bodies via a

three-dimensional Zernike expansion are summarized.

Following that, in x3, the computed SAXS profiles are

compared to the results obtained using the spherical harmo-

nics expansion method. The fitting to a set of experimental

data shows that the method can be used to validate three-

dimensional models against SAXS experimental data. The

advantages of the Zernike method are discussed.

2. Methods

2.1. Zernike polynomials

Three-dimensional Zernike polynomials are natural exten-

sions of two-dimensional Zernike polynomials into the third

dimension. The basic properties and theory are reviewed in

detail elsewhere (Canterakis, 1999). Here, a brief summary is

provided. A three-dimensional Zernike polynomial ZnlmðrÞ is

defined as

ZnlmðrÞ ¼ RnlðrÞYlmð!Þ; ð10Þ

where

RnlðrÞ ¼
Pðn�lÞ=2

k¼0

Nnlkrn�2k; ð11Þ
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Nnlk ¼ ð�1Þk2l�n
ð2nþ 3Þ1=2

�
ð2n� 2kþ 1Þ!½ð1=2Þðnþ lÞ � k�!

½ð1=2Þðn� lÞ � k�!ðnþ l � 2kþ 1Þ!ðn� kÞ!k!

ð12Þ

and Ylmð!Þ is a spherical harmonic. The order indices must

satisfy the following conditions: n � l and (n� l) is even;

�l � m � l. Zernike polynomials are orthogonal functions on

the unit ball: R
r�1

ZnlmðrÞZn0 l0m0 ðrÞ dr ¼ �nn0�ll0�mm0 : ð13Þ

In light of the above orthogonality properties, any twice-

differentiable function on the unit ball can be expanded in a

series of three-dimensional Zernike polynomials:

�ðrÞ ¼
P1
n¼0

Pn
l¼0

Pþl

m¼�l

cnlmZnlmðrÞ: ð14Þ

The complex expansion coefficients cnlm, also known as three-

dimensional Zernike moments, can be obtained using the

Novotni and Klein algorithm (Novotni & Klein, 2003).

The Fourier transform of �ðrÞ parametrized by a Zernike

expansion can be derived in a straightforward manner:

F �ðrÞ½ � ¼
R

r�1

�ðrÞ expðiqrÞ dr

¼
P1
n¼0

Pn
l¼0

Pþl

m¼�l

cnlmF ZnlmðrÞ
� �

; ð15Þ

exp iqrð Þ ¼ 4�
P1
l¼0

Pl

m¼�l

iljlðqrÞYlmð!qÞY
�
lmð!rÞ: ð16Þ

Fourier transform of a single Zernike polynomial is then

(Mathar, 2008)

F ZnlmðrÞ
� �

¼ 4�
P1
l0¼0

Pl0
m0¼�l0

il0
R1
0

jl0 ðqrÞRnlðrÞr
2 dr

� Yl0m0 ð!qÞ
R
!r

Y�l0m0 ð!rÞYlmð!rÞ d!r

¼ 4�
P1
l0¼0

Pl0
m0¼�l0

il0

�
R1
0

jl0 ðqrÞRnlðrÞr
2 drYl0m0 ð!qÞ�ll0�mm0

¼ 4�ilYlmð!qÞ
R1
0

jlðqrÞRnlðrÞr
2 dr

¼ 4�ilYlmð!qÞ
jnðqÞ þ jnþ2ðqÞ

2nþ 3
ð�1Þðn�lÞ=2

¼ 4�il
ð�1Þðn�lÞ=2

Ylmð!qÞbnðqÞ ð17Þ

and thus

AðqÞ ¼ 4�
P1
n¼0

Pn
l¼0

Pþl

m¼�l

ilð�1Þðn�lÞ=2
cnlmY�lmð!qÞbnðqÞ ð18Þ

with

bnðqÞ ¼
jnðqÞ þ jnþ2ðqÞ

2nþ 3
: ð19Þ

2.2. SAXS intensity

SAXS curves are equal to the spherically averaged squared

moduli of the Fourier transform of the scattering object:

IðqÞ ¼
R
�

AðqÞA�ðqÞ d!q: ð20Þ

Given the orthogonality properties of spherical harmonics the

above expression reduces to

IðqÞ ¼ 16�2
P1
n¼0

P1
n0¼0

bnðqÞbn0 ðqÞ

�
Pn
l¼0

ð�1Þðnþn0Þ=2�l Pþl

m¼�l

cnlmc�n0 lm: ð21Þ

Note that all the expressions above still assume a particle of

unity radius. With rmax the particle radius, the above expres-

sion can be modified to include the particle size. With an

additional regrouping of constants, an economical expression

for the SAXS intensity is obtained:

IðqÞ ¼ 16�2
P1
n¼0

P1
n0¼0

bnðqrmaxÞbn0 ðqrmaxÞFnn0 ;

Fnn0 ¼
Pn
l¼0

knn0 l

Pþl

m¼�l

cnlmc�n0 lm;

knn0 l ¼ ð�1Þðnþn0Þ=2�l: ð22Þ

2.3. Real-space modelling

As described by Novotni & Klein (2003) and Mak et al.

(2008), Zernike moments from three-dimensional bodies can

be efficiently obtained via a linear combination of geometric

moments of the object

cnlm ¼
3

4�

X
rþsþt�n

�rst
nlmMrst; ð23Þ

where Mrst is the geometric moment

Mrst ¼
R
jrj�1

�ðrÞxryszt dr; ð24Þ

which can be computed from the voxelized object. The

detailed procedure to compute coefficients �rst
nlm has been

outlined by Novotni & Klein (2003). The voxelization proce-

dure maps a continuous electron density onto a discrete

collection of voxels from which the Zernike moments are

computed. The voxelized electron density forms the basis for

the bound- and excluded-solvent model. Representing the set

of non-zero electron-density voxels with P, the set of voxels

representing the excluded solvent and the surface-bound

solvent (Sþ B) is obtained by masking the voxels within 3.0 Å

of atoms. The set of voxels of the excluded solvent S is

obtained by removing elements in the set Sþ B that lie within

3.0 Å of the surface (via the erosion procedure shown in Fig.

1). The benefit of this operation over a dummy-atom approach

is that one avoids the introduction of overlaps and non-

physical voids in the excluded solvent. Furthermore, the

approach outlined will provide a border layer for all solvent-

exposed surfaces, including large voids. A graphical repre-
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sentation of the above procedure is shown in Fig. 1. In order to

compute the final scattering curves, the Zernike moments of

three voxelized objects are weighted by appropriate contrast

levels, summed and result in a single set of Zernike moments

from which a scattering curve can be obtained via equation

(22). It is worthwhile to mention that the three voxelized

objects, P, S and B, are scaled down by the same rmax to fit in

the unit sphere for the calculation of the corresponding

moments. The same rmax is used for the SAXS profile calcu-

lation, as shown in equation (22).

2.4. SAXS profile fitting and comparison

The discrepancy between the experimental data and the

computed theoretical SAXS profile is measured using the �2

scoring function, defined as

�2
¼

1

Nobs

XNobs

j¼1

IobsðqjÞ � kIcalcðqjÞ þ c

�j

� �2

ð25Þ

where the factor k is a scaling factor and c is the background

correction, both of which can be obtained from standard least-

square fitting (Lawson & Hanson, 1987). In this work, the � is

reported when fitting to the experimental data.

3. Results

3.1. Basic identities

Two basic SAXS invariants can be readily derived from

expression (22). First of all, the total forward scattering, I(0), is

equal to jc000j
2 since jnð0Þ ¼ 0 for n> 0. Furthermore,

expanding I(q) around 0 by truncating expression (22) to an

order of 0 and assuming a mean density

of unity, one obtains

IðqÞ /
j0ðqrmaxÞ þ j2ðqrmaxÞ
� �2

9
: ð26Þ

It can be easily seen that the above

expression is equivalent to the scat-

tering of a solid sphere (Glatter &

Kratky, 1982).

Equation (22) can be expanded

around 0 to get the following expres-

sion:

IðqÞ / 1�
q2r2

max

5
þOðq4r4

maxÞ: ð27Þ

In the very small q region, the higher-

order terms are negligible and this

expression thus reduces to the Guinier

approximation. Using the radius of

gyration (Rg) for a solid sphere, one

obtains the familiar Guinier approx-

imation:

Rg ¼ ð3=5Þ1=2rmax; ð28Þ

IðqÞ / 1�
q2Rg

2

3
ð29Þ

/ exp �
q2Rg

2

3

� �
: ð30Þ

3.2. In vacuo particle scattering

To validate the described derivation,

SAXS intensity profiles for particles in

vacuo were computed via the Debye

equation (Debye, 1915) as well as using

expression (22). As shown in Fig. 2,

for lysozyme protein at the maximum

expansion order of 20, the SAXS

intensity up to a momentum transfer of

0.5 Å�1 is in perfect agreement with the
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Figure 1
The voxelized representations of protein and solvents. (a) A molecule will be mapped to three-
dimensional voxelized objects to model protein (P) and solvent (S + B), and the surface-bound
solvent (B) can be decoupled from the excluded solvent (B) by erosion operations. (b) The splat
range and the erosion range are defined as in the two-dimensional scheme plot.



intensity as computed via the Debye equation. At a

momentum transfer value of larger than 0.5 Å�1 truncation

ripples are observed which are dominated by the spherical

Bessel function of order 0. When we increase the maximum

expansion order to 40, the calculated intensity profiles using

both methods agree with each other up to 1.0 Å�1. For typical-

sized globular proteins (	100–400 residues), the default

maximum expansion order of 30 (i.e. nmax = 30) works well for

the small-angle scattering region (q < 0.5 Å�1). For elongated

models, typically higher expansion orders are recommended

as compared to more globular shapes at any q value, see Table

1. As shown in Fig. 2, the higher-order polynomials contribute

to larger momentum transfer regions only, so a good choice of

nmax is a balance of accuracy and computational speed.

Because the majority of SAXS profiles available do not

exceed q ¼ 0:4 Å�1, a default expansion order of 30 is suffi-

cient for most applications.

3.3. Hydrated particle scattering

Since SAXS experiments for biomolecules are conducted in

solution to study their structures and dynamics, the scattering

in vacuo is not appropriate for comparison with the solution

SAXS data. The contributions of solvents originate from two

sources: (a) the excluded solvent; and (b) the (partially)

ordered solvent at the surfaces of the molecules which results

in denser electron density (compared to the electron density in

the bulk solvent). This has been elaborated on by Svergun et

al. (1995). We computed a few representative macromolecule

SAXS profiles using an in-house implemented spherical

harmonics expansion (SHE) based method and the presented

Zernike (ZNK) method. The SAXS profiles from the indivi-

dual components were compared and are summarized in

Fig. 3.

As discussed in the previous section, the computed theo-

retical scattering profiles using both methods are in excellent

agreement for the protein in vacuo (P). The results shown in

Fig. 3 also indicate that the scattering profiles for the excluded

solvent (S) are very similar despite the different approaches of

solvent modelling. The striking difference is observed for the

scattering contribution from the surface-bound solvent (B),

shown as lines (SHE) and circles (ZNK) in blue in Fig. 3. Fig.

3(a) shows lysozyme [PDB (Protein Data Bank) ID: 6lyz]

and the scattering profiles, where the two methods produce

similar profiles for the bound solvent. For proteins with more

complicated surfaces, reflected in bumpier surfaces, differ-

ences in the scattering profiles calculated using SHE and ZNK

can be found. A typical example is shown in Fig. 3(b), a myosin

domain (PDB ID: 3pn7), for which SHE and ZNK result in

different scattering profiles for the bound solvent. Further-

more, the spherical harmonics expansion is limited by only

modelling the outer surface layer. For molecules with large

cavities or holes the inner surface is completely neglected

using this approach. The resulting scattering profiles for the

research papers

282 Haiguang Liu et al. � Computation of small-angle scattering profiles Acta Cryst. (2012). A68, 278–285

Figure 2
The SAXS profile for lysozyme in vacuo. (a) The resolution of the models
in q space is determined by the maximum expansion order (nmax): using
nmax = 40, the intensity can be accurately computed to 1.0 Å�1. (b) The
corresponding reconstructed models are shown at nmax = 10, 20, 30 and 40.

Table 1
nmax and the corresponding number of parameters in the Zernike-based
method.

The number of expansion coefficients cnlm is approximately proportional to
n2:5

max. The number of coefficients needed to compute a SAXS curve is
approximately proportional to ðnmax=2þ 1Þ2.

nmax

No. of
cnlm

No. of
Fnn0

10 286 36
11 364 42
12 455 49
13 560 56
14 680 64
15 816 72
16 969 81
17 1140 90
18 1330 100
19 1540 110
20 1771 121
21 2024 132
22 2300 144
23 2600 156
24 2925 169
25 3276 182
26 3654 196
27 4060 210
28 4495 225
29 4960 240
30 5456 256



border layer are significantly different for such proteins, as

shown in Fig. 3(c) (PDB ID: 2e2g).

3.4. Fitting to experimental data

The calculated SAXS profiles can be fitted to experimental

data to validate the three-dimensional models. To improve the

fit to experimental data, the Zernike method can optimize the

bound-solvent contrast level (��0). The Zernike method

adopts the approach taken by Svergun et al. (1995) to obtain

the optimal contrast level: the program scans contrast levels

within a predefined range ([0.0, 0.09] e Å�3). The average

electron density of the excluded solvent is set to be

0.334 e Å�3 for typical SAXS experiments, which can be

changed to match particular experimental setups.

To test the described procedure, ten high-quality SAXS

data sets from Grant et al. (2011) were used. The data sets used

had high-resolution crystal structures available comprising

over 90% of the particle used in the SAXS studies. Fig. 4

summarizes the plots of the SAXS profiles, where the theo-

retical curves are calculated from the high-resolution crystal

structures and fitted to the corresponding experimental data.

In all the calculations, we used nmax ¼ 30 for the ZNK method

and lmax ¼ 15 for the SHE method. The corresponding �
scores are summarized in Table 2. The results shown in both

Fig. 4 and Table 2 demonstrate that the computed SAXS

profiles agree with the experimental data.

4. Discussion

The Debye formula and variants have the advantage of easy

implementation, but they do not scale well with system size.

For a molecule with N atoms and M desired intensity data

points, the computational complexity is OðMN2Þ. The sphe-

rical harmonics expansion approach improves the complexity

to linear with respect to the number of atoms N, giving
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Table 2
Fit to experimental data comparing the results from the spherical
harmonic expansion (SHE) and the Zernike-based method (ZNK) to a
selected data set from Grant et al. (2011).

Data
ID

SHE
fit

ZNK
fit

2 3.0 2.9
3 1.6 1.6
5 2.4 2.7
8 2.1 2.0
9 3.5 3.0

10 3.8 3.4
13 1.4 1.6
14 2.3 2.4
15 1.9 2.1
16 2.0 2.3

Figure 3
The SAXS profiles of individual components. The SHE (solid lines) and ZNK (open circles) methods give very similar results for the overall scattering
profiles (shown in black). The scattering profiles for the protein (in vacuo) (red) and excluded solvent (green) from the two methods are also in good
agreement (a). For molecules with irregular surfaces (b) or large cavities/holes (c), the surface-bound solvents have very different scattering profiles
(blue). The default parameters used are: lmax = 15 for SHE and nmax = 30. The corresponding PDB IDs are 6lyz (a), 3pn7 (b) and 2e2g (c).



OðMNÞ. However, the computation time still depends linearly

on the number of data points, M. In the Zernike method, the

position of atoms ðx; y; zÞ and the momentum transfer q are

decoupled [see equations (17)–(22)], and thus the computa-

tional complexity is reduced to OðNÞ with some overhead to

generate voxelized objects. Therefore, the presented Zernike

method has speed advantages when large numbers of data

points are desired (Fig. 5).

The Zernike expansion method can model the holes/cavities

of macromolecules that are usually not well handled in the

spherical harmonics expansion methods. Usually, more poly-

nomials are required to meet the requirements of resolution

and accuracy (see Fig. 2). If the desired q range is up to

0.5 Å�1, the maximum expansion order nmax should be not less

than 30 for typical macromolecules. It is worthwhile to note

that the number of Zernike polynomials escalates cubicly with

respect to the maximum expansion order nmax (see Table 1),

whereas the number of Fnn0 coefficients increases quad-

ratically. When the high-q data are not desired or not avail-

able, the execution time can be significantly reduced by using

smaller nmax.

Even though the described method for the construction of

surface-bound solvent is more appropriate than the single

outer surface method, the uniform body approach used is

not sufficient to describe features seen at high resolution

(Bardhan et al., 2009; Park et al., 2009), owing to the average

internal structure of the solvent shell. The approach described

here aims to provide model data at modest scattering angles

(< 0:5 Å�1) allowing us to ignore internal structure in the

surface-bound solvent model. In the wide-angle X-ray scat-

tering (WAXS) regime, the explicit solvent molecules are

necessary to model the scattering profile more accurately

(Park et al., 2009).

The spherical harmonics expansion method has been used

widely to compute SAXS profiles for comparison with

experimental data. Here, the Zernike expansion method

provides an alternative way of modelling the excluded solvent

and the molecular surface-bound solvent. As described in x2,

this approach models complicated surface-bound solvents

more accurately. It has been pointed out that the dummy-atom

approach used in the spherical harmonics expansion method

causes inaccurate modelling of the excluded solvent by

introducing overlaps and gaps between the dummy atoms. A

more appropriate way of estimating excluded solvent is to use

the union of the dummy atoms; however, the gaps are still to

be filled (Bardhan et al., 2009). The treatment of excluded

solvent as a uniform density body better reflects the small-

angle scattering characteristics of bulk solvent, which is due to

the fact that water molecules are randomly oriented and

spherically averaged to get the SAXS profile. A properly

selected splat range (see Fig. 1) ensures that no gaps are in the

molecular interior, while using the uniform density for the

‘marked’ voxels guarantees that the excluded solvent does

not overlap, which is often observed in the dummy-atom

approach. This voxelization approach follows the idea

proposed by Bardhan et al. (2009), which avoids gaps and

overlaps introduced in the dummy-solvent-atom approach.
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Figure 4
The fit to experimental data. The red curves are calculated using the SHE
method and the green curves are computed using the Zernike method.
The default parameters used are: lmax = 15 for SHE and nmax = 30. The
numbers to the left of each SAXS profile indicate the IDs of the original
data set from Grant et al. (2011).

Figure 5
The computing time comparison for SHE and ZNK. The execution time
of SHE is linearly proportional to the number of data points, while the
computing time for the ZNK method does not depend on the number of
data points. When there are more than 150 data points to be computed,
the ZNK method has speed advantages.



The surface-bound solvent scattering profile differences are

due to different ways of modelling molecular surfaces. In the

SHE approach, the surface is represented by a set of vectors

pointing outwards from the centre, whose directions are

picked to uniformly sample the points on the surface of a

sphere. For small globular molecules, it is reasonable to

assume the smooth continued surfaces and the single uniform

border layer yield results that agree with the Zernike method.

For molecules with more complicated surfaces, a larger

number of surface points are required to model possible large

curvatures using the uniform-outer-layer approach. For

proteins exhibiting cavities, the single outer-surface layer is

insufficient for modelling surface-bound solvent. As described

in x2, the Zernike method uses voxelized representations of

the scattering density, effectively circumventing problems

associated with the single bound solvent layer approach, such

that the solvent layers surrounding the cavities or holes in the

molecules are effectively modelled. The proposed Zernike

expansion approach takes all solvent-accessible surfaces into

account; therefore, the contributions of the surface-bound

solvents are correctly incorporated into the overall scattering

profiles.

When comparing calculated profiles using the SHE and

ZNK methods to the test data, we can see that the two

procedures give very similar results. The spherical harmonics

expansion method achieves better fits in terms of smaller �
scores for some of the data. This is probably due to the fact

that the spherical harmonics expansion method has more

refinable parameters such as the average excluded volume per

atomic group. In the Zernike model, the excluded solvent is

treated as a uniform continuous object; therefore, there is no

further optimization for the excluded solvent scattering at the

present time. The bound-solvent contrast layer is more rele-

vant to the overall scattering intensity in solution. By opti-

mizing only the latter parameter, one can keep the model

simple and significantly reduce the risk of over-fitting.

5. Conclusion

Modelling the excluded and bound solvent of macromolecular

models in order to calculate accurate theoretical SAXS

profiles presents a computational challenge. A new method

based on a three-dimensional Zernike polynomial expansion

is presented. This method treats excluded solvent as a

continuous, uniform-density object and is capable of model-

ling complicated bound-solvent layers. For simple shapes the

results agree with theoretical results calculated using the

spherical harmonics expansion method. For molecules with

complicated surfaces, the Zernike method offers a natural

extension that may help improve the fitting to experimental

data. The program and source code, as well as an online

webserver, are freely available from http://sastbx.als.lbl.gov.

HGL, AH and PHZ are grateful for the LDRD funding

obtained from LBNL to carry out this research.
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